Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Effect of pre-oxidation on corrosion resistance of plasma sprayed and laser treated material for thermochemical water-splitting process

Ioka, Ikuo; Kuriki, Yoshiro*; Iwatsuki, Jin; Kubo, Shinji; Inagaki, Yoshiyuki; Sakaba, Nariaki

no journal, , 

IS process is one of candidates for the large-scale production of hydrogen. Thermal decomposition of sulfuric acid exists in the IS process. A hybrid material with the corrosion-resistance and the ductility was made by a plasma spraying and laser treatment. The specimen had excellent corrosion resistance in the condition of 95 mass% boiling sulfuric acid. The corrosion rate of the specimen in 47 mass% boiling sulfuric acid was fifty times higher than that in 95 mass% boiling sulfuric acid. It seems that the cracks of the surface layer weren't sealed up perfectly in the condition of 47 mass% boiling sulfuric acid. To improve the corrosion resistance of the specimen, the specimen was treated with a thermal treatment for pre-oxidation. The pre-oxidized specimen got superior corrosion resistance in the condition of 47 mass% boiling sulfuric acid. It was confirmed that the pre-oxidation was effective in improving corrosion resistance of the specimen.

Oral presentation

Research and development program of membrane IS process for hydrogen production using solar heat

Sakaba, Nariaki; Inagaki, Yoshiyuki; Myagmarjav, O.; Noguchi, Hiroki; Iwatsuki, Jin; Tanaka, Nobuyuki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji

no journal, , 

The research and development program of the IS process using the membrane technology and solar heat is now on progress aiming at improvement of the hydrogen production efficiency up to 40%. In the H$$_{2}$$SO$$_{4}$$ decomposition reaction process, oxygen production process, the decomposition rate of sulphur trioxide (SO$$_{3}$$) is expected more than 80% at the reaction temperature of 800 - 900$$^{circ}$$C. On the other hand, the decomposition rate of SO$$_{3}$$ decreases to around 30% in the reaction temperature of 600$$^{circ}$$C which temperature will be provided by solar heat, ceramic oxygen permselective membrane and catalyst have been developing to promote SO$$_{3}$$ decomposition in the reaction temperature of 600$$^{circ}$$C. In addition, the ceramic hydrogen permselective membrane and catalyst to promote HI decomposition for hydrogen production, the cation-exchange membrane and catalyst to reduce amount of iodine in the HI circulation process. Also, the corrosion-resistance material to use metal components in the H$$_{2}$$SO$$_{4}$$ decomposition process is underway. This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), energy carrier (Funding agency: JST).

2 (Records 1-2 displayed on this page)
  • 1